Fig. 2. Arrangement of the electrical part of the apparatus.

$$C_{\rm H}$$
 is the magnetizing coil (open solenoid with natural air cool-
ing); the solenoid constant K is 122 Oe/A; the internal dam diam-
eter, length, and region of homogeneous field of the solenoid are
60, 670, and 200 mm respectively. $C_{\rm m}$ is the measuring coil (length
of winding 160 mm); $C_{\rm c}$ is the compensating coil; $R_{\rm Sh}$ is a rheo-
stat shunting $C_{\rm c}$; Fl is a fluxmeter of the Grassot type with a
flux constant of $c_{\rm V}$ = 380+5 Mx/division and a permissible external
resistance of $R_{\rm ext} \leq 30$ Ω . Distance to the scale about 3 m.

Key 1) V 2) Sample 3) C_H 4) Fl 5) C_m 6) C_c 7) R_{Sh}

The value of the effect under consideration is calculated from the formula

.....R.p. 421

(2)

where...., n is the number of turns in C , of is the deflection scale of the fluxmeter in/divisions, and.....(atm).

For the iron sample studied, $I_s = 1690$ G and S = 0.26 cm². From the 22 measurements made we found.....; from this, according to (2):

.....R.p. 421

6